

Detection of snow melt using different algorithms in global scale

Matias Takala matias.takala@fmi.fi

Radiometer data I

- A complete time series of radiometer data from 1978 to 2007 has been acquired from the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado USA
- For the years 1978-1987 SSMR data from Nimbus 7, 1987-2007 SSM/I data from DMSP D-11 and D-13
- Data is EASE-gridded which means that the projection used is north azimuthal equal-area with a nominal resolution of 25 km x 25 km.
- Geolocation files are provided with the data.
- Sun synchronous orbit -> local time at ascending or descending overpass is almost always the same, descending early morning and ascending late afternoon

2

Radiometer data II

- SMMR frequencies and true footprint sizes 6.6 GHz v&h, 148 x 95 km, 10.7 GHz v&h 91 x 59 km, 18.0 GHz v&h 55 x 41 km, 21.0 GHz v&h 46 x 30 km, 37.0 GHz v&h 27 x 18 km = 10 channels
- SMMR swath about 600 km
- SSM/I frequencies and true footprint sizes 19.3 v&h GHz 70x45 km, 22.2 GHz v 60x40 km, 37.0 GHz v&h 38x30 km, 85.5 GHz v&h 16x14 km = 7 channels
- SSM/I swath about 1400 km
- More data gaps in SMMR due to narrower swath width and turn off periods
- 18/19 GHz and 37 GHz are the most important frequencies for the microwave remote sensing of snow

3

Example of EASE-Gridded data

• AMSR-E Instrument on Jan 1 2005 18 GHz frequency, vertical linear polarization, ascending node

INTAS SSCONE snow cover data I

- INTAS = International Association for the promotion of cooperation with scientists from the New Independent States of the former Soviet Union
- SSCONE = Snow Cover Changes Over Northern Eurasia
- Snow depth data is available from 1888 to 2001 (data exists also for years 2002-2007)
- Locations of stations cover most of the former USSR but the network is rather sparse especially in the case of depth data
- Not all depth stations have necessarily been active in the period of interest

INTAS SSCONE snow cover data II

There are 223 measurement stations in INTAS SSCONE dataset

INTAS SSCONE snow cover data III

- Dataset contains these parameters: WMO index, year, month, day, snow depth (cm), snow cover data and flag for snow depth data
- In this work the snow melt date is estimated from the flag, the transitions from 0 to either 1 or 2 are detected and the last one in the 180 days period is take into account

Period	Situation	Code (points)
	No snow	0
Through	0.1 part of visible area is covered by snow	1
of July	0.2 part of visible area is covered by snow	2
1959		
	0.9 part of visible area is covered by snow	9
	Full visible area around of site is covered by snow	10
From	Less than 0.6 part of visible area is covered by snow	0
August 1959	0.5 or more part of visible area is covered by snow	1

Situation		
Value of snow depth is correct		
Continuous snow melting.(Summer)	1	
Temporary snow melting	2	
Snow cover absent at site, however there is snow in the vicinity and a state is specified.	3	
Snow cover is less than 0.5 cm	4	
Observations were not made or value is rejected		

Algorithms I

Channel difference algorithm in together with dry snow detection

(T37v-T19v)> -21 K

(T37h-T19v)< -10 K

- Self Organizing Map (SOM) as an unsupervised neural network classificator (input vector, T=[T19v T22v T37v T19h T37h], output one spesific neuron activates == melt)
- Feedforward neural network with backpropagation rule as classificator (input vector, T=[T19v T22v T37v T19h T37h], output snow melt / no snow melt)
- Time series of channel difference T37v-T19v, detection of changes in level

Algorithms II

- Channel difference and neural network examine 24h daily data
- The standard deviation of the error $_{\epsilon\,=\,t_{\rm int\,as}\,-\,t_{\rm estimated}}$ is ~ 30 days for channel difference and neural network algorithms
- The std for time series algorithm is ~ 20 days
- Time series analysis can not be used directly on daily basis but well suited for climatological studies
- reference data consists of point observations, how well the single locations represents the 25 km x 25 km pixel?
- The accuracy of reference data? The flag values are qualitative estimates

9

Time series detection algorithm I

- Example of snow depth (cm), FMI snow status code and T_{37v} - T_{19v} channel difference

Time series detection algorithm II

Observations in formal notation

$$\begin{aligned} D(t) &= T_{37v}(t) - T_{19v}(t) \\ D_{max} &= max \langle D(t_0), D(t_1), ..., D(t_N) \rangle \\ D_{min} &= min \langle D(t_0), D(t_1), ..., D(t_N) \rangle \\ \langle D(t) \rangle &\geq p \cdot [D_{max} - D_{min}] + D_{min} \end{aligned}$$

 D is the channel difference, < > time average, empirically best results are obtained when averaging window is 7-8 days, p is typically 0.9

Results I

- Define error $\varepsilon = t_{intas} t_{estimated}$
- 1704 applicable estimates for SMMR and 2205 estimates for SSM/I

Results III

• Slopes: -0.35, -0.24, -0.43, -0.07 and -0.64

Results IV

• Confidence levels (90%,95%) for the slopes

Centre of the circular test	Slope	95% confidence	95% confidence	90% confidence	90% confidence
Sodankulä	0.35				
Vorbovopok	-0,35	-0,04	-0,00	-0,59	-0,11
	-0,24	-0,49	0,00	-0,45	-0,04
Tunguska	-0,43	-0,83	-0,04	-0,76	-0,10
Novosibirsk	-0,07	-0,39	0,24	-0,33	0,19
Moscow	-0,64	-1,13	-0,15	-1,05	-0,23

• The results are statistically significant!

To do

- Test the effect of different land use categories to the accuracy
- In addition to the snow melt detection detect wet snow cases as well (with improved accuracy)
- Operational aspects
- Integration of the snow melt detection to the continent scale SWE and SD mapping (<u>http://snow.fmi.fi</u>), alpha stage-system running
- Comparison with results from optical instruments (MODIS)
- Using the snow melt data as input to climatological models